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In previous episodes … 

• 23-Oct-19
• Data, data types
• Interactive visualization (Orange) 
• Classification with decision trees (root, leaves, rules, entropy, info gain, TDIDT, ID3)

• 6-Nov-19
• Classification: train – test (evaluate) - apply
• Decision tree example (on blackboard)
• Decision tree language bias (Orange workflow)
• Homework: 

• InfoGain questions 
• Orange workflow 
• Reading “Classification and regression by randomForest” by Liaw & Wiener, 2002

• 25-Nov-19
• Evaluation: 

• Methods: train-test, leave-one-out, randomized sampling,…
• Metrics: accuracy, confusion matrix, precision, recall, F1,…

• Homework: XOR, questions, precision and recall



Assignment 1

1. Sketch the real decision tree model behind the data of the XOR example.

2. What happens if we remove the attribute “C”? Guess first, then use an Orange 
workflow and find out.



Assignment 2:  Questions

1. What do we get when testing on the training set?

2. Can we always get a 100% accuracy on the training set?

3. When do we use “leave-one-out”?

4. What is stratified sampling?

5. When is classification accuracy “good”?



Assignment 3: Compute the precision, recall 
and F1 for both classifiers for the class Fraud
Two confusion matrices for two 
classifiers For the class Fraud

• Precision=

• Recall=

• F1=

• Precision=  

• Recall=

• F1=



Homework

• Express F1 in terms of the entries in the confusion matrix (TP, FP, TN, 
FN) and simplify the equation.



High precision and/or high recall?

• Can we make a model more precise (increase precision)?

• How sure is the model about a certain prediction?

• We can set different thresholds and get different binary classifiers.

• Find a trade-off between precision and recall appropriate for a problem at hand.



Probabilistic classification

• A probabilistic classifier is a classifier 
that is able to predict, given an 
observation of an input, 
a probability distribution over a set of 
classes, rather than only outputting 
the most likely class that the 
observation should belong to.

• Ranking

• Tresholds/cutpoints
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ROC curve and AUC

• Receiver Operating Characteristic curve (or ROC 
curve) is a plot of the true positive rate 
(TPr=Sensitivity=Recall) against the false positive 
rate (FPr) for different possible cutpoints.

• It shows the tradeoff between sensitivity and 
specificity (any increase in sensitivity will be 
accompanied by a decrease in specificity).

• The closer the curve to the top left corner,  the 
“better” the classifier.

• The diagonal represents the random classifiers 
(predicting the positive class with some 
probability regardless the data).
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AUC - Area Under (ROC) Curve

• Performance is measured by the area under 
the ROC curve (AUC). An area of 1 represents 
a perfect classifier; an area of 0.5 represents a 
worthless classifier.

• The area under the curve (AUC) is equal to 
the probability that a classifier will rank a 
randomly chosen positive example higher 
than a randomly chosen negative example.
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Exercise: ROC curve and AUC
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Actual class

Confidence 

classifier 

forclass Y FP TP FPr TPr

P1 Y 1

P2 Y 1

P3 Y 0.95

P4 Y 0.9

P5 Y 0.9

P6 N 0.85

P7 Y 0.8

P8 Y 0.6

P9 Y 0.55

P10 Y 0.55

P11 N 0.3

P12 N 0.25

P13 Y 0.25

P14 N 0.2

P15 N 0.1

P16 N 0.1

P17 N 0.1

P18 N 0

P19 N 0

P20 N 0



ROC curve and AUC
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Actual class

Classifier 

confidence 

forclass Y FP TP FPr TPr

P1 Y 1 0 2 0 0.2

P2 Y 1 0 2 0 0.2

P3 Y 0.95 0 3 0 0.3

P4 Y 0.9 0 5 0 0.5

P5 Y 0.9 0 5 0 0.5

P6 N 0.85 1 5 0.1 0.5

P7 Y 0.8 1 6 0.1 0.6

P8 Y 0.6 1 7 0.1 0.7

P9 Y 0.55 1 9 0.1 0.9

P10 Y 0.55 1 9 0.1 0.9

P11 N 0.3 2 9 0.2 0.9

P12 N 0.25 3 9 0.3 0.9

P13 Y 0.25 3 10 0.3 1

P14 N 0.2 4 10 0.4 1

P15 N 0.1 7 10 0.7 1

P16 N 0.1 7 10 0.7 1

P17 N 0.1 7 10 0.7 1

P18 N 0 8 10 0.8 1

P19 N 0 9 10 0.9 1

P20 N 0 10 10 1 1



ROC curve and AUC
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Area Under (the convex) Curve
AUC = 0.96

Actual class

Classifier 

confidence 

forclass Y FP TP FPr TPr

P1 Y 1 0 2 0 0.2

P2 Y 1 0 2 0 0.2

P3 Y 0.95 0 3 0 0.3

P4 Y 0.9 0 5 0 0.5

P5 Y 0.9 0 5 0 0.5

P6 N 0.85 1 5 0.1 0.5

P7 Y 0.8 1 6 0.1 0.6

P8 Y 0.6 1 7 0.1 0.7

P9 Y 0.55 1 9 0.1 0.9

P10 Y 0.55 1 9 0.1 0.9

P11 N 0.3 2 9 0.2 0.9

P12 N 0.25 3 9 0.3 0.9

P13 Y 0.25 3 10 0.3 1

P14 N 0.2 4 10 0.4 1

P15 N 0.1 7 10 0.7 1

P16 N 0.1 7 10 0.7 1

P17 N 0.1 7 10 0.7 1

P18 N 0 8 10 0.8 1

P19 N 0 9 10 0.9 1

P20 N 0 10 10 1 1



Probabilistic classification

A probabilistic classifier is a classifier that is able to predict, given an observation of 
an input, a probability distribution over a set of classes, rather than only outputting 
the most likely class that the observation should belong to.
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Naïve Bayes Classifier



Basic probability refresh

• Probability of A 

• Independence

• Conditional probability

• Bayes’ Rule



The idea behind the Naïve Bayes Classifier

• We are interested in the probability of the class C given the attribute values X1, 
X2, X3, …. , Xn

• We „naively“ assume that all attribute values X1, X2, X3, …. , Xn are mutually 
independent, conditional on the category C



Homework

• Learn about the derivation of the Naïve Bayes formula 
https://en.wikipedia.org/wiki/Naive_Bayes_classifier

https://en.wikipedia.org/wiki/Naive_Bayes_classifier


Naïve Bayes Classifier

Class ci

Attribute values

Conditional probability of 
attribute value vi given class c

* where ∝ denotes proportionality
* The results are not probabilities (they do not sum up to 1). The formula is simplified for easy 
implementation (and time complexity), while the results are proportional to the estimates of the 
probabilities of a class given the attribute values.

P(ci | a1= v1, a2=v2,…, aj=vj) ∝



Exercise: Naïve Bayes Classifier

• Does the spider catch a white ant during the night?

• Does the spider catch the big black ant at daytime?
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Exercise: Naïve Bayes Classifier
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Does the spider catch a white ant during the night?



Exercise: Naïve Bayes Classifier
Does the spider catch the big black ant at daytime?



Use of Naïve Bayes

• Frequently used in practice
• Medical diagnisis

• The attributes are inherently chosen to be as independent as possible
• NB is not sensitive to missing data

• Simple text classification(features are words)
• Classification of news into categories
• Spam detection

• ….

• Why?
• Simple
• Not sensitive to missing values
• Uses all the available data
• Very few parameters
• Visualization with nomograms



Probability Estimation



Estimating probability

• In machine learning we often estimate probabilities from small samples of data 
and their subsets:
• In the 5th depth of a decision tree we have just about 1/32 of all training examples.

• Estimate the probability based on the amount of evidence and of the prior 
probability
• Coin flip: prior probability 50% - 50%

• One coin flip does not make us believe that the probability of heads is 100%

• More evidence can make us suspect that the coin is biased



Estimating probability

Relative frequency
• P(c) = n(c) /N 

• A disadvantage of using relative frequencies for 
probability estimation arises with small sample 
sizes, especially if the probabilities are either very 
close to zero, or very close to one.

• In our spider example:

P(Time=day|caught=NO) = 

= 0/3 = 0

26

n(c) … number of examples where c is true
N … number of all examples
k … number of possible events



Relative frequency vs. Laplace estimate

Relative frequency
• P(c) = n(c) /N 

• A disadvantage of using relative frequencies for 
probability estimation arises with small sample 
sizes, especially if the probabilities are either very 
close to zero, or very close to one.

• In our spider example:

P(Time=day|caught=NO) = 

= 0/3 = 0

Laplace estimate
• Assumes uniform prior distribution over the 

probabilities for each possible event

• P(c) = (n(c) + 1) / (N + k)

• In our spider example: P(Time=day|caught=NO) = 
(0+1)/(3+2) = 1/5

• With lots of evidence it approximates relative 
frequency

• If there were 300 cases when the spider didn’t 
catch ants at night: P(Time=day|caught=NO) = 
(0+1)/(300+2) = 1/302 = 0.003

• With Laplace estimate probabilities can never be 0.
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Laplace estimate
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Laplace estimate
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Homework

• Compare the Naïve Bayes classifier with decision trees.

• How do we evaluate the Naïve Bayes classifier? Methods, metrics.

• Estimate the probabilities of C1 and C2 in the table below by relative frequency 
and Laplace estimate.

Number of events Relative frequency Laplace estimate

Class C1 Class C2 P(C1) P(C2) P(C1) P(C2)

0 2

12 88

12 988

120 880



Literature

• Max Bramer: Principles of data mining (2007)
• 2. Introduction to Classification: Naive Bayes and Nearest Neighbour

On pg. 30, there is a mistake where it says “making the assumption that the 
attributes are independent” … it should be “conditionally independent given 
the class”. Refer to https://en.wikipedia.org/wiki/Naive_Bayes_classifier
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Numeric prediction
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Example

• data about 80 people: Age and 
Height
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Test set



Baseline numeric predictor

• Average of the target variable
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Baseline predictor: prediction
Average of the target variable is 1.63



Linear Regression Model

Height =    0.0056 * Age + 1.4181

37

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

Age

H
e

ig
h

t

Height

Prediction



38

Linear Regression: prediction

Height =    0.0056 * Age + 1.4181



Regression tree
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Regression tree: prediction



Model tree
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Model tree: prediction
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KNN – K nearest neighbors

• Looks at K closest examples (by non-target attributes) and predicts the average of their 
target variable

• In this example, K=3
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KNN prediction

Age Height

1 0.90

1 0.99

2 1.01

3 1.03

3 1.07

5 1.19

5 1.17
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KNN prediction

Age Height

8 1.36

8 1.33

9 1.45

9 1.39

11 1.49

12 1.66

12 1.52

13 1.59

14 1.58
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KNN prediction

Age Height

30 1.57

30 1.88

31 1.71

34 1.55

37 1.65

37 1.80

38 1.60

39 1.69

39 1.80
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KNN prediction

Age Height

67 1.56

67 1.87

69 1.67

69 1.86

71 1.74

71 1.82

72 1.70

76 1.88



KNN video

• http://videolectures.net/aaai07_bosch_knnc
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Which predictor is the best?
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Age Height Baseline
Linear 

regression

Regressi

on tree

Model 

tree
kNN

2 0.85 1.63 1.43 1.39 1.20 1.00

10 1.4 1.63 1.47 1.46 1.47 1.44

35 1.7 1.63 1.61 1.71 1.71 1.67

70 1.6 1.63 1.81 1.71 1.75 1.77



MAE: Mean absolute error

The average difference between the 
predicted and the actual values.
The units are the same as the unites in the 
target variable.



MSE: Mean squared error

Mean squared error measures the average 
squared difference between the estimated 
values and the actual value.
Weights large errors more heavily than 
small ones.
The units of the errors are squared.



RMSE: Root mean square error

Taking the square root of MSE yields the 
root-mean-square error (RMSE), which has 
the same units as the quantity being 
estimated.

𝑅𝑀𝑆𝐸 = 𝑀𝑆𝐸



Correlation coefficient

• Pearson correlation coefficient is a statistical formula that measures the strength 
between variables and relationships.

Similar to confusion matrix in the classification case.
No unit.



Numeric prediction in Orange

Models

Metrics

• MSE – mean squared error 

• RMSE – root mean squared error 

• MAE – mean absolute error

• R2 – correlation coefficient
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Numeric prediction Classification

Data: attribute-value description

Target variable:

Continuous

Target variable:

Categorical (nominal)

Evaluation: cross validation, separate test set, …

Error:

MSE, MAE, RMSE, …

Error:

1-accuracy

Algorithms:

Linear regression, regression trees,…

Algorithms:

Decision trees, Naïve Bayes, …

Baseline predictor:

Mean of the target variable

Baseline predictor:

Majority class



56

Performance measures for numeric prediction

Witten, Ian H., Eibe Frank, and Mark A. Hall. "Practical machine learning tools and techniques."
Morgan Kaufmann (2005): 578. pg. 178



Homework

• Read

Loh, Wei‐Yin. "Classification and regression trees." Wiley Interdisciplinary Reviews: 
Data Mining and Knowledge Discovery 1.1 (2011): 14-23. 
https://onlinelibrary.wiley.com/doi/full/10.1002/widm.8

• Compare decision and regression trees.

• Rules of thumb when choosing the k parameter of KNN.

https://onlinelibrary.wiley.com/doi/full/10.1002/widm.8


Homework

• Use Orange and a calculator to compute RRSE for a chosen model

• Data: regressionAgeHeight.csv

• RRSE = root relative squared error
• Nominator: sum of squared differences between the actual and the expected values

• Denominator: sum od squared errors

• RRSE: Ratio between the error of the model and the error of the naïve model (predicting the average)

• Hint: If we divide both the nominator and the denominator by n we get RSE of the model and const
model.

p – predicted, a – actual, ā – the mean of the actual


